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In Engineering Mechanics: Statics, our aim is to equip 
students with the knowledge, tools and good habits 
for solving mechanics problems in realistic con-
texts.  Mechanics courses have historically presented 
engineering students with a precise, mathematical 
treatment of the material. This approach has appeal 
in that it presents mechanics as a relatively unclut-
tered “science.” On the other hand, this material 
is generally of idealized cases, and students, when 
confronted with more realistic systems, are often at 
a loss as to how to proceed. 

From the outset in Chapter 1 we focus on devel-
oping good problem solving habits that include being 
systematic about the analysis process, understanding 
the modeling assumptions, and developing intuition 
for how loads are transferred through structures and 
machines. This introduction of the material provides 
a motivational framework for the more mathemati-
cal presentation of statics found in Chapters 2–11.

Throughout this text, our emphasis is to present 
and illustrate:

a. The physical principles and concepts that 
describe non-accelerating objects. These principles 
and concepts are grounded in the reader’s own expe-
riences to motivate and provide a context for formal 
mathematical representations.

b. An analytical problem-solving methodology 

for describing and assessing physical systems, so 
that the reader is able to apply the principles in a 
systematic manner in evaluating engineered sys-
tems. Throughout the text, the methodology and its 
application are framed within the context of broader 
engineering practice.

c. A wide variety of problems from daily life and 

engineering practice. Through our “Watch-It” videos 
and multiple styles of artwork we demonstrate how 
messy-looking problems can be simplified for engi-
neering analysis. 

This online course has been written and developed 
explicitly with the students in mind—those in the 
class who are trying to get their minds around the 
material for the first time. Mechanics can sometimes 
be counterintuitive, and it can be a major frustration 
to those students who do not immediately relate to 
the logic behind the material (and this includes many 

of them!). Thus the presentation is a personalized 
one—one in which the students feel that they are 
having a one-on-one discussion with the authors. We 
do not skimp on rigor but do try to make the material 
accessible and, as far as we can, make it fun to learn. 

Features

The goals outlined above are supported by a number 
of unique features in this online course:

Emphasis on sketching: We emphasize the 
importance of communicating solutions through 
graphics both to enhance learning and to prepare 
the reader for engineering practice. Most engineer-
ing students are visual learners.1 In Chapter 1 we 
introduce the importance of visualizing and sketch-
ing skills for the successful implementation of struc-
tured analyses, and provide guidelines for sketching 
objects. We further reinforce the importance of 
drawing through:

a. A full chapter (Chapter 4) devoted to the skill 
of drawing free-body diagrams, including drawings 
on engineering graph paper background that have a 
hand-sketched look to provide examples to students 
of how to document solutions. An ideal response 
from a reader regarding a graphical element of the 
text would be, “The sketch in Figure 2.3.5 made the 
concept more understandable AND I can create a 
similar drawing to illustrate the concept to someone 
else.”

b. A Draw step included in every worked exam-
ple. To reinforce the drawing concept we use “hand-
drawn” figures on graph paper. 

Structured problem solving procedures:  
We introduce a structured analysis procedure early 
in the text and use it consistently in all worked 
examples. These steps include explicitly listing the 
Assumptions made and the importance of the Draw 
and Check steps as part of a complete solution.

1 Felder, Richard, “Reaching the Second Tier: Learning and 

Teaching Styles in College Science Education.” J. College 

Science Teaching, 23(5), 286–290 (1993).

v



vi PREFACE

Multiple paths for students to learn:  
Different students find they learn better in different 
ways and having variety is both motivating and helps 
deepen understanding of new concepts. We provide 
text to read, videos to watch, and many problems for 
students to tackle.  

Feedback for students and  faculty:  
Getting feedback is a key tool in effective learning 
for students and effective teaching for instructors. 
Online resources in WileyPLUS give students rapid 
feedback on their level of preparation, whether they 
understand a new concept, and on their ability to 
carry out more detailed calculations. At the same 
time, the instructor has a window into how her stu-
dents are doing by getting individualized and class-
average scores to these online problems.

Scaffolding in learning: Statics concepts 
often look easy, but they can be surprisingly subtle.  
A strong grasp of the fundamental concepts is needed 
to use statics successfully to analyze systems. To 
develop this grasp of concepts we break them up for 
students into individual pieces, providing multiple 
opportunities to explore and master new concepts 
before moving on. The “Are You Ready” problems 
at the beginning of each chapter let students assess 
if they have a good understanding of the math and 
previously covered mechanics topics they need in 
order to be ready to learn the next chapter material.

Multiple study tools: To facilitate speedy 
access to key content, we have included review and 
study tools, such as Learning Objectives at the start 
of each chapter, and a Just the Facts section at the 
end of each chapter giving an overview of terms, 
equations, and concepts from each chapter. To the 
greatest extent possible, all in-text figures include 
descriptive figure captions that show at a glance what 
is being illustrated. Key equations are highlighted 
in yellow, and key terms are in bold blue type when 
they first appear.

Instructor Resources

The following resources are available to faculty using 
this text in their courses:

WileyPLUS:

The Engineering Mechanics: Statics WileyPLUS 
course is a new-generation online learning system 

designed to address the key learning and teaching 
issues in today’s engineering mechanics course. It 
includes powerful and customizable content, tools, 
and resources to facilitate mastery of introductory 
statics for students of a wide range of abilities and 
preparation. The system uses scaffolded practice 
and feedback as a means to build student compe-
tency, confidence, and commitment. The system also 
improves productivity and assessment of learning 
progress for any class size and across many sections 
so that instructors can focus on teaching. 

Each individual element of the online experience 
has been crafted to become part of a larger, cohesive 
learning experience, one that leverages the unique 
capabilities available in a digital setting. 

To deliver on student learning and mastery chal-
lenges, Engineering Mechanics: Statics implements: 

•	Diagnostic assessment before each new chapter—

Students are able to gauge their readiness for 
each new chapter—and what they may need to 
review further—with a brief diagnostic quiz. 

•	A consistent instructional cadence: tell, show, 

do—For each new major concept within a chap-
ter, students will read or watch a passage that 
develops it, then see solved examples that apply 
it, and finally have an opportunity to master it 
through progressive, interactive exercises. 

•	Scaffolded learning—Practice exercises and a 
selection of homework problems use techniques 
such as hints, partial solutions, feedback on com-
mon mistakes, and progressive complexity to 
build student confidence and reinforce skills. 

•	Optional pathways and resources—The system 
facilitates differences in students’ ideal learning 
styles. For example, they are able to choose a 
preferred pathway through the conceptual and 
example content, leveraging both video and 
textual content to reinforce their understanding 
of the material presented. All practice exercises 
are available to students for self-study, even if 
they are not formally assigned by instructors for 
assessment. 

Solutions Manual: Fully worked solutions to 
all exercises in the text, using the same solution pro-
cedure as the worked examples.

Electronic figures: All figures from the text 
are available electronically, for use in creating your 
own lectures. 
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Student Resources

The following resources are available to students:

Answers to selected exercises: The text 
companion site, www.wiley.com/college/sheppard, 
includes answers to selected exercises from the text, 
to help students check that they have solved the 
exercises correctly. 

Commitment to Accuracy

From the beginning we have committed to provid-
ing accurate and error-free coverage of the material. 
In this mission we have benefited from the help of 
many, many people. 

While writing solutions, each solution was solved 
and checked at least twice, by a combination of 
authors, accuracy checkers, and graduate students.

All text and art were reviewed line by line by a 
developmental editor. A proofreader compared all 
corrections to final pages to confirm that any and 
all corrections were made. Finally, and certainly not 
least, the authors themselves spent countless hours 
checking all elements of the project at every step of 
the way to guarantee accuracy.

Despite our best efforts, it is possible that some 
errors still remain. Should anyone find anything they 
question, please contact the authors and we will see 
that any necessary corrections are made.
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C H A P T E R  1 ◆

  his text is about how to describe the 

forces that act on structures in equilibrium. 

Newton’s laws of motion are used to 

establish mathematical relationships 

between the various quantities involved. 

These relationships enable us to predict 

how the quantities affect one another. 

After studying the material in this text, you 

should be able to use static analysis, 

which involves

1.  looking at a structure and seeing how it 

resists loads,

2. creating a model of the structure,

3.  evaluating the loads on the structure 

that keep it in equilibrium, and

4.  postulating and answering “what if” 

questions about the structure.

This sequence of events is illustrated in 

Figure 1.1.1.

Static analysis is one example of 

 engineering analysis. More generally, 

engineering analysis involves performing 

the calculations needed to assess the 

behavior of a system. The basis for these 

calculations is often physical principles 

from chemistry and physics. This chapter 

presents background material for static 

analysis.

TPRINCIPLES 

AND TOOLS 
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ANALYSIS

FAy

FAx
MAz

W3WgW2W1

x

y



2 CH 1 PRINCIPLES AND TOOLS FOR STATIC ANALYSIS
L E A R N I N G  O B J E C T I V E S◆

On completion of this chapter, you will be able to:

◆  Summarize the steps of the product realization process and an engineering analysis  

procedure. (1.1)

◆ State Newton’s three laws of motion. (1.2)

◆ Convert between SI and USCS units. (1.3)

◆ Represent vectors. (1.4)

◆  Recognize the different types of drawings used in engineering analysis and basic guidelines for  

creating them. (1.5)

◆ Describe good problem-solving habits. (1.6)

◆ State the overall goal of this text. (1.7)

1.1  HOW DOES ENGINEERING  
ANALYSIS FIT INTO ENGINEERING 
PRACTICE?

Learning Objective: Summarize the steps of the  

product realization process and an engineering analysis  

procedure.

There are some 1.5 million practicing engineers in the United States; this 
is less than 1% of the U.S. population. Engineers create the products and 
systems that we interact with daily. They create products that improve 
our quality of life (surgical devices, air-scrubbers in smoke stacks), 
entertain us (roller blades, roller coasters, electric trains, bikes), and 
educate us (LCD projection systems, computers). Engineers also create 
the systems that extend our reach from our planet’s surface to the bot-
tom of the ocean and to distant planets.

The process by which engineers design and manufacture these prod-
ucts and systems is referred to as the product realization process and 
may extend over months (less than six months for disk drives), years 
(for automobiles or bridges), or even decades (as in the case of the space 
station).

Any product or system begins with someone identifying an initial 
client need (the design problem). This need may arise from the market, 
the development of new technology, the demand for more sophisticated 
engineered systems or simply the President of the United States stat-
ing, “We will go to the moon before the end of the decade.” Engineers 
design a product or system to solve some problem. Identification of a 
problem includes development of a list of design requirements. These 
design requirements are benchmarks used to evaluate progress toward a 
design solution, as well as the effectiveness of the final design solution. 
They may have to do with, for example, the final design’s performance, 
appearance, time-to-market, cost, ease of manufacture, safety, impact on 
the environment, or ability to meet national or international standards.

Listing of design requirements is followed by generation of ideas on 
how to address the need or problem. These early ideas are referred to 

2

Figure 1.1.1 Engineer using analysis 
to answer a question.
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Assume:
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Equations:

(3)
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1.1 HOW DOES ENGINEERING ANALYSIS FIT INTO ENGINEERING PRACTICE? 3

as design concepts, and this phase of the product realization process is 
known as conceptual design.

Conceptual design is followed by preliminary design, where some of 
the concepts are developed further and some are discarded. Often the 
decision to continue with or discard a concept is based on an evaluation 
of how well the concept meets the design requirements. Evaluation 
may involve calculations and/or building prototypes (physical or vir-
tual) of the concept. Typically, preliminary design ends with the selec-
tion of a single concept that will be detailed and refined in the next 
phase of design (called detail design).

Decisions made during detail design about specific configurations of 
components, types of materials, size of connections, methods of manu-
facturing, and so on, are often based on analysis to confirm that design 
decisions and choices continue to meet the design requirements. The 
analysis may involve numerical modeling and simulation. Building and 
testing of prototypes may also be involved.

Detail design results in a comprehensive description of the product 
or system. This description consists of drawings, complete fabrication 
specifications, and supporting documentation that describes the design 
decisions. It should also include analysis details and test results that sup-
port these decisions.

Detail design is followed by production, in which the product or sys-
tem is constructed or manufactured. Here engineers oversee the process 
to verify that the final product meets the design requirements. Analysis 
may be used in this verification.

The product realization process that we have described may sound 
like a linear, sequential process, with one phase connecting to the start 
of another phase. In reality the process is a continuous loop, as suggested 
in Figure 1.1.2. For example, new design requirements may be generated 
later in the process as additional details of the design are being worked 
out. Also the real problem being solved may not be identified until well 
into the conceptual phase of design, or two competing concepts may be 
carried into detail design before a decision is made as to which one will 
be produced.

Regardless of where in the product realization process flowchart an 
engineer is working, he or she is likely to be involved in verifying and 
justifying decisions about the product. Engineering analysis is one of the 
main tools the engineer will use. The major steps in engineering analysis 
are summarized as an engineering analysis procedure (see Box 1.1).

In carrying out engineering analysis it is critical to simultaneously con-
sider the physical situation and the mathematical model of the  physical 
situation. The mathematical model allows us to understand and predict 
performance of the physical situation. At the same time, any model is 
only an approximation of the physical situation, and so is an estimate 
of real performance. One of the challenges in undertaking engineering 
analysis is learning to appropriately model a physical situation to obtain 
insights into its approximate performance.

Figure 1.1.2 Product realization 
 process flowchart.

Production
(construct product for client)

Detail design
(refine choices, add such

details as specific part types
and dimensions, build and
test prototypes, carry out

analyses to verify decisions)

Preliminary design
(select concepts to develop
further based on analysis
and/or prototype testing)

Conceptual design
(generate concept designs)

Client “need” identification
(define need and

design requirements)
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1The man most immediately responsible for what you’ll be learning in this book is Sir 

Isaac Newton. Even among geniuses, Newton stands out. He needed a new mathemati-

cal approach to handle his investigations and so he invented calculus. That same year, he 

revolutionized optics by realizing that white light is made up of a spectrum of colors. And, 

to top it all off, he laid down his three laws of motion. Even more amazing, he did all of 

this when he was in his early twenties while taking a short break from London in order to 

avoid the plague.

1.2  PHYSICS PRINCIPLES: NEWTON’S  
LAWS REVIEWED

Learning Objective: State Newton’s three laws of motion.

The physical principles that underlie engineering analysis in this text are 
Newton’s three laws of motion:1

First Law: An object will remain at rest (if originally at rest) or will 
move with constant speed in a straight line (if originally in motion) if 
the resultant force acting on the object is zero. Another way of stat-
ing the same law is that an object originally at rest, or moving in a 
straight line with constant velocity, will remain in this state provided 
the object is acted on by balanced forces.

Second Law: If the resultant force acting on an object is not zero, the 
object will have an acceleration proportional to the magnitude of the 
resultant force and in the direction of this resultant force.

Box 1.1: Overview of Engineering Analysis Procedure

Identify questions to be answered by

analysis

Summarize and record what is

known

Define assumptions used in creating

a model of the system of interest

Draw diagrams necessary to represent the

model

Solve equations for unknowns and

state how results meet analysis goals

Formulate equations that

represent the model’s behavior

Check results using technical knowledge,

engineering judgment, and common sense

Summarize and interpret

answers

Modeling

Confirming Values

Understanding Problem

Goals

Givens

Assumptions

Draw

Formulate

Solve

Check

Summarize
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Third Law: The forces exerted by two objects on each other are equal in 
magnitude and opposite in direction.

In this text we use the first and third laws extensively to describe situations 
where objects are at rest or are moving at constant velocity as a result of 
being acted on by balanced forces. We call these situations “static.” This 
text is about static analysis, which is often referred to simply as statics. 
Statics can be used to design and describe a wide array of engineered sys-
tems, from the propulsion of bicycles (as described in Appendix D) to the 
tension in the cables in a suspension bridge (as described in Appendix E).

Closely related to statics is dynamics, the area of engineering that also 
embodies analysis based on Newton’s laws except that the object is mov-
ing at a nonconstant velocity, an acceleration, as described by Newton’s 
second law. In mathematical terms, the second law says that if an object 
is acted upon by an unbalanced force F, the object experiences accelera-
tion a in the same direction as the force. The acceleration is proportional 
to the force (and the proportionality factor is the mass m of the object):

 =F am  (1.1)

The bold italic notations F and a denote that these are vector quantities. 
Dynamics is usually covered in a separate course apart from statics.

Together statics and dynamics make up the study of “rigid body 
mechanics.” A rigid body is a combination of a large number of particles 
in which all the particles remain at a fixed distance from one another 
before, during, and after a force is applied to the object. As a result, 
the material properties of any object that is assumed to be rigid will not 
be considered when analyzing the forces acting on the object. In most 
cases, the actual deformations occurring in structures, machines, mecha-
nisms, and the like are relatively small, and the rigid-body assumption 
is suitable for analysis or preliminary design. Detail design requires full 
investigation of the deformations.

1.3  PROPERTIES AND UNITS IN 
ENGINEERING ANALYSIS

Learning Objective: Convert between SI and USCS units.

Static analysis involves quantifying, manipulating, and measuring prop-
erties of objects. The properties we are concerned with are length, time, 
mass, and force:

Length is a description of distance.

Time is conceived as a succession of events. Although the principles of 
statics are time-independent, this quantity does play an important 
role in the study of dynamics.

Mass is a property of matter by which the action of one object can be 
compared with the action of another. This property manifests itself as 
a gravitational attraction between two bodies and provides a quan-
titative measure of the resistance of matter to a change in velocity.

Force is considered as a push or pull exerted by one object on another.
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In working with these quantities we need consistent and standard mea-
sures—these are provided by the International System of Units (abbre-
viated SI after the French Le Système International d’Unités) and the 
U.S. Customary System of Units (USCS), as summarized in Table 1.1. 
The SI system is the accepted national standard of measurement in all 
countries except Myanmar, Liberia, and the United States.

SI Units

As shown in Table 1.1, the standard measure of length in the SI system 
is the meter, which is roughly the length from an adult’s nose to his or 
her extended finger tips. Often engineers deal with lengths that are 
much larger (e.g., Earth’s radius) or smaller (e.g., the thickness of a sheet 
of paper) than a meter; therefore, it may be more appropriate to deal 
with multiples or submultiples of the meter. We denote these multiples 
or submultiples with the prefixes listed in Table 1.2. For example, the 

Table 1.1 Standard Measures

Name

Standard Unit 

of Length

Standard Unit 

of Time

Standard Unit 

of Mass

Standard Unit 

of Force

International System of Units (SI) meter (m) second (s) kilogram (kg) newton (N)*

U.S. Customary System of Units (USCS) foot (ft) second (s) slug** pound (lb)

*derived quantity, based on meter, second, and kilogram, as discussed below (N )
kg m

s2=
⋅

**derived quantity, based on foot, second, and pound, as discussed below (slug )lb s
ft

2

= ⋅

Table 1.2 SI Prefixes*

Factor Prefix Symbol

1018 exa- E

1015 peta- P

1 000 000 000 000 = 1012 tera- T

1 000 000 000 = 109 giga- G

1 000 000 = 106 mega- M

1 000 = 103 kilo- k

100 = 102 hecto- h

10 = 101 deka- da

0.1 = 10−1 deci- d

0.01 = 10−2 centi- c

0.001 = 10−3 milli- m

0.000 001 = 10−6 micro- µ

0.000 000 001 = 10−9 nano- n

0.000 000 000 001 = 10−12 pico- p

0.000 000 000 000 001 = 10−15 femto- f

0.000 000 000 000 000 001 = 10−18 atto- a

*Prefixes commonly used in this text are shown in boldface type.
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mean radius of Earth is 6.37 × 106 m or 6370 km, and a sheet of paper is 
1 × 10−4 m or 0.1 mm thick.

The standard measure of mass in the SI system is the kilogram (kg), 
defined as the mass of a particular platinum-iridium cylinder kept at the 
International Bureau of Weights and Measures near Paris. From Table 

1.2, we see that the prefix of “kilo” means that this standard has a mass 
of 1000 grams. Engineers work with a range of mass sizes, from the very 
large (mass of a Boeing 787) to the very small (mass of a white blood cell).

The standard measure of time is the second (s).
The standard unit of force in the SI system is the newton (N). One 

newton is equal to the force required to give 1 kilogram of mass an accel-
eration of 1 m/s2. We will have a lot more to say about forces in Chapter 2.

In the SI system, length, mass, and time are the fundamental 
properties, and force is a derived quantity from Newton’s second 
law. By Newton’s second law (1.1), one newton (1 N) of force equals 
[1 kg][1 ] [ ]m

s

kg m

s2 2=
⋅

. Guidelines for working with SI prefixes and units 
are given in Box 1.2.

U.S. Customary Units

The standard measure of length in this system is the foot, as shown in 
Table 1.1. The standard measures for time and force are the second and 
pound, respectively.

In the U.S. Customary system, the fundamental properties are length, 
force, and time. The standard unit of mass in the U.S. Customary system 
is called the slug and is derived from the foot, second, and pound using 
Newton’s second law. One slug is equal to the amount of matter that is 
accelerated at 1 ft/s2 when acted upon by a force of 1 pound (1 slug =  
1 lb ⋅ s2/ft).

No matter which system of units you are working with, it is imperative 
that you use consistent units. For example, if you are using kilometers as 
the measure of length, make sure that you use kilometers consistently 
for all measures of length in the problem. Do not mix with feet or miles. 
Sometimes you may need to convert quantities from one measurement 
system to another; Table 1.3 lists some conversion factors for going 
between U.S. Customary units and SI units.

Table 1.3 Conversion Factors

Converting from U.S. Customary to SI

Quantity U.S. Customary To SI multiply by

Force lb 4.4482 N/lb

Mass slug 14.5938 kg/slug

Length ft 0.3048 m/ft

Converting from SI to U.S. Customary

Quantity SI To U.S. Customary multiply by

Force N 0.2248 lb/N

Mass kg 0.06852 slug/kg

Length m 3.2808 ft/m
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E X E R C I S E S  1 . 3◆
1.3.1. [*] Derive conversion factors for changing the fol-
lowing U.S. Customary units to their SI equivalents:

a. Pressure, lb/in.2

b. Force, kip
c. Volume, ft3

d. Area, in.2

1.3.2. [*] Derive conversion factors for changing the fol-
lowing SI units to their U.S. Customary equivalents:

a. Pressure, N/m2 (pascal)
b. Pressure, MPa (Megapascal)
c. Volume, m3

d. Area, mm2

1.3.3. [*] Jamaican sprinter Asafa Powell set the world 
record for the 100-meter dash on May 27, 2010. His time 
was 9.07 seconds. Calculate his average speed in m/s, ft/s, 
and mph.

1.3.4. [*] Calculate the percent difference between the 
mile and the metric mile (1500 meters).

1.3.5. [*] The world best performance in the women’s 
marathon is 2:17:42, set by Paula Radcliffe of the United 
Kingdom on April 17, 2005 in the London Marathon. On 

average, how long did it take her to run each mile? What 
was her average speed in m/s? A previous best perfor-
mance was 2:18:47, turned in by Catherine Ndereba from 
Kenya. (The race was run in Chicago on October 7, 2001.) 
How much faster did Paula Radcliffe run each mile of the 
race?

1.3.6. [*] In the heavyweight division, Russian Aleksey 
Lovchev holds the world record for the clean and jerk. He 
lifted a mass of 264 kg. Calculate the mass in slugs. What 
is the corresponding weight in newtons and pounds? How 
many people would it take to clean and jerk a Porsche 911 
if they were all as strong as Aleksey Lovchev? (Make sure 
to document your source for weight data.)

1.3.7. [*] When a certain linear spring has a length of  
180 mm, the tension in it is 170 N. For a length of 160 mm, 
the compressive force in the spring is 120 N.

a. What is the stiffness of the spring in SI units? In U.S. 
Customary units?

b. What is its unstretched length in SI units? In U.S. 
Customary units?

1.3.8. [*] Complete the following two tables:

1. Unit symbols are always written in lowercase let-
ters, with the following exceptions: symbols for 
some prefixes and symbols named after an indi-
vidual are capitalized (e.g., N for newton).

2. Unit symbols are never written with a plural “s” 
because this may be confused with the unit for 
second (s).

3. Compound prefixes should not be used. For exam-
ple, k µm (kilo-micrometer) should be expressed as 
mm (millimeter) since 1(103)(10−6) m = 1(10−3) m = 
1 mm.

4. The exponential power given for a unit having a 
prefix refers to both the unit and its prefix (e.g., 
mm2 = (mm)2 = mm ⋅ mm).

5. In engineering notation, exponents are generally 
displayed in multiples of three. This convention 
facilitates conversion to the appropriate prefix. 
For example, 4.0(103) N can be rewritten as 4.0 kN.

6. Quantities defined by several units that are mul-
tiples of one another are separated by a dot to 

avoid confusion with prefix notion (e.g., N = kg ⋅ 
m/s2 = kg ⋅ m ⋅ s−2). The dot notation differentiates  
m⋅s (meter-second) from ms (millisecond).

7. Avoid prefixes in the denominator of composite 
units. For example, write kN/m rather than N/mm. 
The exception to this rule is the kilogram (kg); 
since it is the base unit of mass, it is fine to use it 
in the denominator (e.g., write Mm/kg rather than 
km/g).

8. When calculating, convert all prefixes to powers 
of 10. For example, (100 kN)(200 µm) = [100(103)
N)][200(10−6)m] = 20,000(10−3) N ⋅ m. Then express 
the final result using a single prefix combined with 
a numerical value between 0.1 and 1000: 20,000(10−3) 
N ⋅ m becomes 20 N ⋅ m.

9. Minutes, hours, days, and so forth are used for 
multiples of the second. Plane angular measure-
ment is made using radians (rad) or degrees (°).

Box 1.2: Guidelines for Working with SI Prefixes and Units
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1.4  COORDINATE SYSTEMS AND VECTORS

Learning Objective: Represent vectors.

Coordinate Systems

In working with physical objects it is useful to specify information about 
them relative to a Cartesian coordinate system, which uses three axes that 
are orthogonal to one another, as shown in Figure 1.4.1a. In addition, the 
system is right-handed. In a right-handed system, if you point the fingers 
of your right hand in the direction of the positive x axis and bend them 
(as in preparing to make a fist) toward the positive y axis, your thumb 
will point in the direction of the positive z axis, as shown in Figure 1.4.1b.

The assignment of coordinate axes is often a matter of convenience, and 
the choice is frequently up to the engineer. The logical choice is usually 
indicated by the geometry of the situation. For example, when the principal 
dimensions of a system or structure are given in the horizontal and vertical 
directions, the assignment of coordinate axes in these directions is gener-
ally convenient (Figure 1.4.2a). If the structure and/or the forces are not 
aligned with the horizontal and vertical directions, alternative orientations 
of the coordinate axes may be appropriate, as shown in Figure 1.4.2b.

Scalar and Vector Quantities

Static analysis deals with two kinds of quantities—scalars and vectors. 
Scalar quantities can be completely described with a magnitude  (number 

MEN’S World Records for Selected Field Events

Event Meters Centimeters Inches Feet Miles

High jump 2.45 96.46

Pole vault 6.16 20.21

Long jump 352.36

Triple jump 720.08 60.01 1.14E-02

Shot put 23.12 75.85

Discus throw 7408

Hammer throw 8674 3414.96 284.58

Javelin throw 98.48 323.10

WOMEN’S World Records for Selected Field Events

Event Meters Centimeters Inches Feet Miles

High jump 2.09 6.86

Pole vault 506 199.2

Long jump 24.67 4.67E-03

Triple jump 15.50 610.2 9.63E-03

Shot put 2263 74.25

Discus throw 3023.6 251.97

Hammer throw 3192.1 266.01

Javelin throw 237.14

Figure 1.4.1 xyz coordinates arranged 
in right-handed manner.
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only) and associated units. Examples of scalar quantities are mass, 
density, length, area, volume, speed, energy, time, and temperature. In 
mathematical operations, scalars follow the rules of elementary algebra. 
Scalars in this text are represented with italic type (V).

In contrast to scalars, vector quantities have both magnitude (with 
units) and direction, and obey the parallelogram law of addition, as 
described below. Examples of vector quantities are velocity, accelera-
tion, momentum, force, moment, and position.

A vector is typically represented in drawings by an arrow with a head 
and a tail (Figure 1.4.3). The direction from the tail to the head of the 
arrow represents the direction of the vector, and the length of the arrow 
is often drawn proportional to the magnitude of the vector. The magni-
tude of the vector is generally written next to the arrow.

In this text, vector quantities are distinguished from scalar quanti-
ties through the use of boldface italic type (V). In longhand writing, 
a vector may be denoted by drawing a “half arrow” above the letter, 
V
��

. Euclidean norm bars surrounding the vector symbol are used to 
denote the magnitude of a vector. Thus, the magnitude of the vector V 
is denoted by V V, or

��

 (in longhand).
As mentioned above, vectors obey the parallelogram law of  addition. 

This means that the two vectors V1 and V2 in Figure 1.4.4a can be 
replaced by an equivalent vector V that is the diagonal of a  parallelogram 

Figure 1.4.2 Various orientations of coordinate axes.
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Figure 1.4.3 A position vector.
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Figure 1.4.4 (a) Two vectors to be 
added; (b) vector addition using the 
parallelogram law.
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